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Abstract
Citizen participation can provide valuable insight into data that is not captured by official sources. In this paper, we propose a
technique for using mental maps consisting of three fundamental elements: nodes, paths, and edges. These elements can be used
to augment crime data analysis in urban spaces by incorporating the values and knowledge of citizens. We apply this technique
to an analysis of property crime in three US cities: Baltimore, Atlanta, and Chicago. Subsequently, we find these cities have
neighborhoods where the crime could be substantially higher—or perceived by citizens as higher—than is accounted for in the
official public crime data. This analysis can be a vital first step for identifying hidden hotspots or better understanding public
perceptions of high crime.

1. Introduction

Citizen participation in local government is vital to maintaining a
functioning city, as paternalistic city programs that do not incor-
porate the values and knowledge of citizens are at risk for being
misguided at best and manipulative at worst [Arn69]. For example,
in an analysis of crime data and violence prevention programs in
Cardiff, researchers determined that fewer than one-third of vio-
lent incidents requiring emergency treatment in the UK and Scan-
dinavia appear in official police records [FSBS11]. The absence of
these incidents from the official record points to a striking differ-
ence of perspective between the police and the inhabitants of the
city, notably, victims of violence. Clearly, citizen participation is
necessary to provide insight into the nature of urban crime data.

It is challenging to take something as qualitative and ephemeral
as public perception and translate it into a tangible form. Lo-
cal knowledge can be acquired through a variety of approaches
based on Public Participation in Geographic Information Systems
(PPGIS) [Sie06, WHC02] and Bottom-Up GIS (BUGIS) [Tal00],
in which researchers typically conduct a series of workshops to
document the values, ideas, and opinions of citizens. For example,
Dennis interviewed local youths and asked them to create sketches
of their perception of the qualitative aspects of the environment
and how “bad” intersections affected their planned paths through
the neighborhood [Den06]. If these maps were created based solely
on authoritative data, it is unlikely they would capture the knowl-
edge available to the youth in the workshop. Combining these
sketches—or mental maps—with what data the police do have,
however, has the potential to greatly increase the accuracy of that

data with respect to unknown spatial distributions and the values of
citizens living in those neighborhoods.

In this paper, we introduce a technique utilizing three ele-
ments of the “image of the city” identified by Lynch: nodes (ar-
eas of heightened activity and interaction), paths (channels that
people take to move around the city), and edges (barriers that di-
vide regions) [Lyn60]. These elements have been used extensively
to analyze the structure of urban spaces and crime patterns that
are governed by human movement [BB82, Arm13]. Brantingham
and Brantingham have documented the ways in which Lynch’s
elements—notably nodes, paths, and edges—contribute to trends in
criminal behavior [BB93]. For example, the highest concentrations
of crime typically occur within the vicinity of nodes or the paths be-
tween them. Analysis of the path network can reveal the route that
criminals are taking, potential sites for crimes that have not been
recorded, or paths that contribute to crimes of opportunity. Finally,
edges experience high crime rates as a function of both opportunity
and criminal location preference. We also describe our implemen-
tation of this technique in a sketch-based system for capturing cit-
izens’ mental maps and highlighting the disparities between them
and raw spatial data. Finally, we provide preliminary findings from
the application of our technique to property crime data in three US
cities: Atlanta, Baltimore, and Chicago.

2. Related Work

As a support mechanism for visualization, imageability is fre-
quently used to determine the characteristics of a scene that will
allow a user to navigate through a 2D or 3D environment and bet-
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ter understand the data. An early attempt by Ingram and Benford
set the stage for many later efforts in using imageability elements
(e.g., nodes, paths, edges) to improve the legibility of a data visu-
alization [IB95, IB96]. Many of these efforts seek to automatically
detect notable elements, though, rather than allowing the user to ex-
plicitly define a mental map. For example, Chang et al. combined a
building aggregation algorithm and a demographic data exploration
panel to analyze the differences in census data between neighbor-
hoods [CWK∗07]. Similarly, van Wijk et al. support the creation
of wayfinding maps through the simplified representations of ur-
ban networks given a focal origin node [vDHO16]. Glander and
Döllner also use focal points and building aggregation, but incor-
porate a balanced tree of landmark elements to help navigate a 3D
representation of the city at varying levels of abstraction [GD09].

Research to improve public participation in GIS (PPGIS) has
found that creating rapid sketch-based representations improve
communication during participatory planning workshops, and that
many current GIS tools fail to facilitate this capability [AK02].
Moreover, many GIS applications remain inaccessible to a wider
audience [HT03, Sie06]. Al-Kodmany avoided this dilemma by
pairing an expert-operated GIS with an artist that took requests
from participants during planning sessions in the Pilsen commu-
nity [AK99]. Many systems allow for sketching in a GIS con-
text, though more as a natural interaction technique for explor-
ing data [TSH∗14] or creating a query of existing spatial fea-
tures [Ege97]. Rarer is the capability to express elements within
a spatial context that are of importance to the user, such as the
components of a mental map. This type of expression could be
acquired implicitly, by tracking the areas of the city and spatial
data items that a user inspects. This approach has been used quite
successfully in other contexts, notably text document analysis, by
generating a semantic model from user interaction at varying levels
of detail [EFN12]. This type of interaction, however, often divides
the user from understanding the internal mechanisms that are be-
ing used to generate a representation of the data. Instead, following
Green’s et al.’s guidance on process initiators [GRF09], our tech-
nique allows the user to explicitly capture her knowledge of the
spatial environment by directly interacting with the interface.

3. Elements of the City

Though competent mental maps can be drawn from any of the five
elements [WUS13], we have chosen to focus on nodes, paths, and
edges for our technique due to previous research establishing a con-
nection between those elements and criminal behavior. Branting-
ham and Brantingham demonstrated that these elements are nec-
essary, if not sufficient, components in a framework for the anal-
ysis of the spatial distribution of crime [BB93]. Spatial data vi-
sualization represented along paths has been previously explored
by Xie and Yan for traffic accidents [XY08, XY13], Wong et al.
for power grids [WSM∗09], and Kim et al. for crime [KMM∗13].
Wood et al. have also demonstrated abstract hierarchical repre-
sentation that depict the connectivity between regions on a map,
though this is primarily for trajectory data rather than joining of
spatial data to paths [WDS10, WSD11]. Nodes, or areas of high
activity, can most directly be compared to the hotspots derived dur-
ing more spatial analysis of point-based data. However, unlike Eu-

clidean [MRH∗10] or grid-based [RMK12] approaches, our tech-
nique allows users to actively specify nodes rather than try to pas-
sively detect them. Our technique is novel in its incorporation of
edges, which are not present in other approaches.

3.1. Paths

We utilize paths as the primary mental map element in our tech-
nique. Building from previous work in network-based Kernel Den-
sity Estimation (KDE), we utilize a path network consisting of
roads [XY08]. This approach differs from standard planar KDE in
that the distance between points on the map are not measured in Eu-
clidean space, but based upon network distance. In our approach,
we obtain road-level data from OpenStreetMap (OSM) and con-
struct a coarse graph between intersections. As an open data source
that can be modified by the public, OSM is ideal for constructing
a backdrop for analysis of community-oriented data. This allows
us to construct path networks that match real roads, rather than in-
terpreting sketched paths on the map as passing through or above
impassable areas (e.g., buildings).

We begin by dividing the road topology into lixels, or linear pix-
els [XY08]. Lixels consist of linear road segments of equal length.
In terms of KDE, lixels are similar to selection of a pixel resolu-
tion for the planar space. The selection of lixel length in network
KDE is, as with the selection of pixel resolution in planar KDE,
an important consideration affecting the variation details of spa-
tial patterns. Once road segments have been divided into lixels, we
then assign each crime event in the set to the nearest lixel. Each lixel
with one or more assigned data items is a source lixel, and serves as
the point of origin for the network KDE within the network topol-
ogy. We follow the approach of Kim et al. [KMM∗13] rather than
Xie and Yan, and assign scores to each lixel based on a weighted
kernel function (Equation 1) and a minimum detection bandwidth
rather than using a count of nearby crimes. This allows us to take
into account the distance from the event to the lixel, because unlike
the traffic accidents analyzed by Xie and Yan, crimes do not always
occur directly on roads. For each of these events e1,e2, . . . ,en, we
determine the minimum distance di from that event ei to any part
of the lixel. For this approach, the choice of kernel function does
not affect the results as much as the choice of bandwidth hl , which
should be chosen carefully based upon the domain. We utilize the
Epanechnikov kernel, depicted in Equation 2.

f (x) =
1

nhl

n

∑
i=1

K(
di

hl
) (1)

K(u) =


3
4
(1−u2), if ||u|| ≤ 1

0, otherwise
(2)

Once the spatial data items have been assigned to the correct
lixel, we iterate through the source lixels to determine each of the
other lixels that are reachable from their position given the current
hl using the Bellman-Ford algorithm. Each other lixel that a source
lixel can “reach” receives a score adjustment relative to the net-
work distance between them. The resulting score for any lixel rep-
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(a) 2015 Property Crimes in Baltimore (b) Church and School Nodes (c) Highway, Water, and Train Edges

Figure 1: Path KDE is rendered as line thickness and saturation in Figure 1a, with thicker and darker lines indicating a higher network
score. In Figure 1b, the path network is shown in yellow, with green highlights indicating the lixels that have been amplified due to node
proximity (church and school nodes are black circles). In Figure 1c, the red highlights indicate lixels that have been dampened due to edge
proximity (highway, water, and train edges are black lines mostly occluded by the path highlights).

resents the network KDE score aggregated from all of the source
lixels that can reach it (Figure 1a). This score is aggregated us-
ing Equation 1, though we substitute a bisquare equation for the
kernel (Equation 3). This equation utilizes a different bandwidth,
hg, than the preceding detection bandwidth, as we are calculating
the density of the lixel with respect to the nearby lixels in the net-
work topology rather than aggregating nearby crimes to their near-
est source lixel.

Ki(u,hg) =

[1− d2
i

h2
g
]2, if di < hg

0, otherwise
(3)

3.2. Nodes

To incorporate node elements into a mental map of the city, we
update the existing path model to amplify the reach of a source
lixel. This amplification provides an incremental boost to the hg of
all source lixels within close proximity to a node (Figure 1b). The
effect of this amplification diminishes as the distance to the node
increases, subject to the weighted distance obtained by Equation 3.
We default nodes to an activity radius of half the current hg, though
other parameters would yield alternative results. For example, if
hg = 100m, then the activity radius would be 50m. A source lixel
within this distance of the activity node would receive an improved
reach in addition to the default reach. A source lixel that occurs in
proximity to many activity nodes is further amplified.

3.3. Edges

In our technique, edge elements modify the lixel topology by artifi-
cially inflating lixel length, creating a dampening effect for source
lixels that are nearby. When an edge is added to the map, it in-
creases the artificial length of all lixels that are within its activity
radius, subject to Equation 3. As with nodes, the default activity
radius is half the current hg. As source lixels spread to reachable
nodes, they observe inflated lixels as longer than they actually are.

This reduces the propagation of source lixels across edges and cre-
ates a border effect of heightened scores near edges (Figure 1c).

3.4. Sketching Nodes, Paths, and Edges

We have implemented the capability to directly specify mental
maps by sketching nodes, paths and edges. Mental maps can be
built on top of a street network imported from OSM or created from
scratch within a tile-based map viewer. To create a node on a map
within the system, a user draws a circle around the area of activity.
This indicates to the system that lixels within the area around the
node should receive an amplified reach, or localized hg. To create
an edge, the user draws a line. This indicates to the system that it
should dampen the reachability, or artificial lixel length, of lixels.
Paths care drawn as straight lines, which are fitted to the closest
path along available surface roads. Nodes, paths, and edges can
also all be deleted using the eraser function. These capabilities are
not used for obtaining the mental maps used in this paper, but are
necessary for our planned investigations of crime data with partici-
pants through community workshops.

4. Mental Maps of Property Crime

To understand the potential effects of mental maps on quantita-
tive spatial data, we analyzed property crime in three US cities us-
ing mental maps created from community-sourced OpenStreetMap
(OSM) data. While these are not meant to substitute wholly for
the actual mental maps sketched by citizens, they are a useful pre-
liminary step for exploring the differences between community-
sourced nodes, paths, and edges and the official crime data.

We obtained property crime data for Atlanta, Baltimore, and
Chicago, three cities with significant differences in layout and nav-
igability. We utilized road network topology data obtained from
OSM to form the paths of the mental map constructed for each
city, incorporating all path types accessible on foot or by car. We
included a second set of OSM features as edges: major interstate
highways, train tracks (excluding subway features), and water fea-
tures (rivers and streams).
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(a) Atlanta (b) Baltimore (c) Chicago

Figure 2: The disparities between the mental maps and the original property crime distributions. All paths have a central yellow color to
stand out against the disparity shading and background, so paths that are only yellow have no substantial difference. Disparity is calculated
as difference in percentile, so red areas increased in value within the relative distribution of the mental map scores compared to their original
score, blue values decreased in calculated percentile.

The constructed mental maps for each city are used to interpret
the distribution of property crimes: nonviolent (larceny, auto theft,
and nonresidential burglary) and violent (pedestrian and residen-
tial robbery). The data sets consist of events that occurred in 2015
and were obtained through the Federal Uniform Crime Reporting
(UCR) program. For each mental map, activity nodes are centered
around church and school locations, as these represent important
components of the community and family. Only the locations that
OSM contributors thought were important enough to record and
upload are included in the mental maps, and the subsequent men-
tal maps reflect this. To limit the effects that clusters of relevant
nodes might have on the model, we apply a hierarchical aggrega-
tion scheme to cluster together nodes that occur within hl , the local
bandwidth, of each other. Cities were analyzed with a lixel size of
25m to provide a resolution of approximately four lixels per city
block. Local bandwidth was set at hl = 100m so crimes would be
associated with a lixel at the nearest block but no further. Finally,
the global bandwidth was set at hg = 200m to limit the propagation
to a maximum distance of approximately two blocks.

Visual representations of the disparities between the original data
distributions and the new distributions created using mental maps
are shown in Figure 2. Red lines indicate neighborhoods where the
distribution is more dense in the mental map, while blue lines in-
dicate neighborhoods where the distribution is more dense in the
original data. For the city of Atlanta, the greatest disparity between
the mental map and the raw data occurs around West Midtown
and the intersection between the major highways in the center of
the map near downtown (Figure 2a). For the city of Baltimore,
the largest disparity occurs with high mental map distributions in
East Baltimore in the neighborhoods of Oliver, Dunbar-Broadway,
and Middle East (Figure 2b). Many other neighborhoods, notably
downtown and Fells Point, are lower, though Harlem Park to the
west and the stadium area to the south also have higher property
crime distributions. Finally, for the city of Chicago, most of the
disparities in the mental map exist on the edge between the Loop
and South Loop neighborhoods (Figure 2c). To the south, neigh-

borhoods along the lake and to the southwest along the highway
also have an increase, as well as the northern neighborhoods around
Goose Island. For the neighborhoods that are drawn in red, the
presence of nodes and edges may indicate that the crime density
is higher than what is captured in the official data source, or that
inhabitants of those neighborhoods perceive crime as being higher
because it occurs close to important nodes in their community. In
either case, programs that are designed for reducing the amount
of crime in those neighborhoods would be well-advised to include
citizens of those neighborhoods in planning sessions.

5. Discussion and Future Work

In this paper, we proposed a novel technique for applying mental
maps based on nodes, paths, and edges to spatial data. We described
our implementation of this technique in a sketch-based system that
will allow citizens to directly record their mental maps. Finally, we
provided preliminary findings from the application of our technique
to property crime data in three US cities. This technique facilitates
the identification of disparities in mental maps and urban spatial
data, providing insight into unknown or citizen-perceived hotspots.

There are several promising directions for future work. The most
important would be to conduct a user study with citizens in these
cities to collect individual mental maps and consolidate them for
further analysis against the existing data as a first step for new crime
prevention and public safety initiatives. Much like the Cardiff study
described previously [FSBS11], additional sources of citizen data
could be collected and compared to the distributions generated us-
ing mental maps to determine the degree to which they align or
differ. Finally, mental maps and spatial crime data can be used to-
gether to explore citizens’ qualitative perception of the city to bet-
ter understand where they perceive crime to be higher or neighbor-
hoods to be more dangerous when available data indicates crime is
low. Changing the perception of these neighborhoods would be a
first step to attracting new businesses and residents, which could be
important for sustaining long-term community vitality.
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